
Eigenvalues and the Intrinsic Viscosity oJ 
Short Gaussian Chains 

G. B. THURSTON* and J. D. M O R R I S O N ~  

Exact eigenvalues which are central to the Gaussian chain theory for dilute 
saqutions of linear polymers have been determined for short chains. This is 
done Jor a number of chain segments N ranging ]tom 1 to 15 and taking 
into account the effects o[ hydrodynamic interaction between segments. Using 
these exact eigenvalues, the molecular weight dependence of  the steady flow 
intrinsic viscosity [-q] is determined together with the terminal relaxation time 
~'1 which is derivable [tom [~7]. These theoretical results are compared with 
similar results obtained using approximate eigenvalues k~ for N large and 
small eigenvalue index p. It is found that while the character o[ the depend- 
ence of the 2~o, [*/] and "r 1 on N is similar for both exact and approximate 
results, the numerical factors may differ significantly. Comparison o[ these 
results [or [*/] with measured values for polystyrene over a wide range of 
molecular weights gives good agreement with the exact theoretical results and 
some indication of the inexactness of the approximate results for N large. 
The r 1 derived from ['r/] are compared with values obtained independently from 

oscillatory [tow birefringence measurements. 

THE Gaussian chain theory is widely used as a mathematical model of a 
linear polymer molecule and forms the basis for theoretical description of 
a number of macroscopic properties of the polymer in dilute solutionsl-L 
The several treatments include taking into account the hydrodynamic forces 
on the subchains as well as hydrodynamio interaction between subchain 
elements or segments, Brownian motion, and internal viscosity. This work 
has generally been carried under the assumption that the number of seg- 
ments is large. Recent work with oscillatory flow birefringence by Thurston 
and Schrag s has shown that the number of segm6nts N remains finite in the 
description of the frequency response of birefringence by means of N 
relaxation processes. More recently a direct proportion between N and 
molecular weight M has been demonstrated 9. The influence of a finite 
N on the theoretical predictions of oscillatory flow birefringence, acoustic 
birefringence, oscillatory flow viscosity I°, flow birefringence extinction 
angle 11, and steady flow intrinsic viscosity 12 has been determined. Com- 
parison with measurements has been carried out 13 for polystyrene solutions. 

The eigenvalues which are central to the Gaussian chain theory have 
been determined exactly only for the case of no hydrodynamic interaction 
between chain segments, the free draining condition 2. For cases involving 
hydrodynamic interaction it has been necessary to assume that the number 
of segments N is large and that the index p which characterizes the N 
eigenvalues ;kp is small compared to N 14,15. The influence of these approxi- 
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mations on the theoretical results has not been determined. In the present 
work exact values of the ~ are determined for N in the range from 1 to 
15 for all values of p while taking into consideration effects of hydro- 
dynamic interaction. The exact eigenvalues are compared with the approxi- 
mate values together with the molecular weight dependence of the steady 
flow intrinsic viscosity [~] obtained using these values. In addition, the 
eigenvalues are used to obtain the terminal relaxation time of the chain "rl 
from [~]. The new theoretical results for the molecular weight dependence 
of [7/] are compared with measurements on polystyrene in Aroclor 1248 
and the ~'1 derived therefrom is compared with that from frequency response 
of oscillatory flow birefringence to provide an independent check of the 
character of the chain theory. 

T H E O R Y  

The Gaussian chain model as used here consists of N statistical segments 
joining N +  1 beads numbered from i = 0  to i = N .  The entire model is 
assumed to be suspended in a viscous solvent of viscosity ~, which can 
interact with the chain through the beads only. Using the formalism of 
Cerff, the equation of motion in terms of the x components of the bead 
coordinates is written in matrix form as 

...> --> --> --> .q, 

- ( 3 k T / b  ~) Ax - Q-'~ • Q-'  ( i  - xn) - f (x - x,) - k T  V x  In ¢ -- 0 (1) 

where inertial effects are neglected. In the above equation, k is Boltz- 
mann's constant, T is the absolute temperature, b is the end-to-end length 
of the statistical segment and A is the coordinate matrix given by 

1 - 1  0 0 / 
- !  2 - 1  0 0 

0 - 1  2 0 0 
A = • • ( 2 )  

0 0 0 2 - 1  
0 0 0 - 1  1 

...> 

x is the column vector whose components are the x components of each of 
.-> 

the N + 1 beads and x has as components the x components of the velocity 

of each bead. xn refers to the x components of the velocity of rotation 
...> 

of the molecule due to the velocity of the solvent, and xz refers to the 
x components of the solvent velocity at the site of each bead if the bead 
were absent from that point, f is the segmental friction factor, qJ is the 
distribution function of the location of the beads, and (I, is the diagonal 
matrix of internal viscosity. Q is the transformation matrix to normal 
coordinates which allows the equation of motion to be written in diagonal 
form. 
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The distribution function ~b must satisfy the equation of continuity 

..-) . . )  ...> 

O~b/Ot = - div ~b(x + 3; + z) 

which can be written in the form 

(3) 

[ 0q, _ X V I q ,  -x0,+ H V ,  l n q , + 3 k T  _1 _,, Q _ I - '  -' H A x  + f HQ cp (~ - ~.) 
Ot x,~.~ 

(4) 
where H is written in terms of the hydrodynamic interaction tensor T as 

H=fr+1 (5) 

where 1 is the identity matrix. Since the exact location of each bead is 
unknown, the average values of T are used and are given by 

I i 

= 0  , / = k  (6) 

where R~k is the magnitude of the vector connecting the jth and kth beads. 
The determination of the average in equation (6) depends on the inter- 

pretation that is made of the nature of the statistical segments. If all N 
segments are taken to be of fixed length b, then the problem is to find the 
distribution function of the displacement vector after a three-dimensional 
random walk of I j -k l  steps, each step being the same fixed length. If, 
however, the length of the statistical segments is assumed to be distributed 
in a Gaussian manner with a root mean square length of b, the problem 
still reduces to a random walk, but one with steps having a Gaussian dis- 
tribution of length. Since it was found that the eigenvalues calculated 
using the fixed segment length concept of the model do not predict properly 
the experimentally observed relation between intrinsic viscosity and mole- 
cular weight, the details of that development are not given here. The 
distribution function for the displacement vector for a three-dimensional 
random walk of Z =  ] j -k l  steps is given by Chandrasekhar TM as 

WzOR)- (2~rZb~ / 3)3/~ exp( -3R2 /2Zb  2) (7) 

where b is interpreted as the root mean square segment length. Using 
equation (7) to compute (I/R~,>, where [i-k] =Z, yields 

1 
I / -  k l 1/~b (8) 

This is the same expression used by Kirkwood and Riseman 5, although 
they developed the expression for use with monomer units with hindered 
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rotation, making the expression inaccurate for small values of ]]-k I. In 
the present case, however, the use of the expression is exact for any value 
of I j -  kl, 

Using equation (6), T can be written as 

T=-- F 

/ 0 
( ' )  b ~ 0 

o r  

where h* is given by Thurston and Peterlin ~° as 

• . b  1 
• 

• ° 

(9) 

(10) 

h* = If/(12~)I/~n,b] (I I) 

Thus, using equations (5), (8), (9) and (10), the elements of H are given by 

= 1  , j = k  (12) 

The matrices in equation (4) are diagonalized by transforming to a set 
of normal coordinates according to 

u = Q - i x  

v --- Q-~y (13) 
--). 

w = Q - I z  

- - )  --)  

where u, v and w are the normal coordinates and the columns of Q are the 
eigenvectors 17 of the product HA. The eigenvalue equation from which 

--> 

the eigenvectors o~p and eigenvalues k~ are obtained is 

- )  --.> 

HAot~ = h~otp (14) 
.-> 

The components of ~p are used to form the pth column of Q and therefore 

Q - ~ H A Q  = A  (15) 
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where A is the diagonal matrix whose diagonal elements are the eigenvalues 
h~ of the matrix HA. 

Using the results of Burgers's treatment TM of the intrinsic viscosity of 
particles in solution and using the normal coordinate form of the diffusion 
equation to compute the necessary space averages, Cerf ° obtains the ex- 
pression 

N~b~f ~ 1 
['O]= 6M-q. p=l ~--~- (16) 

for the limiting case of zero velocity gradient and small internal viscosity, 
where Na is Avogadro's number. Aside from the above restrictions, equa- 
tion (16) is free from any simplifying assumptions about the size of N, 
the number of statistical segments. 

E I G E N V A L U E  C A L C U L A T I O N S  

In order to obtain theoretical values for the intrinsic viscosity from equation 
(16), the eigenvalues hp of the matrix HA must be computed satisfying 
equation (13). For the free-draining case of no hydrodynamic interaction, 
i.e. h * - 0 ,  the free-draining eigenvalues are then simply the eigenvalues 
of the matrix A and are exactly given by 

hp,,,e~=4 sin ~ [p'rr/2 (N+ 1)] (17) 

For the case of h* ~: 0, the eigenvalues are not as easily obtained. 
Previous expressions for values of hp as a function of N and h* were 
developed using the simplifying assumption that N was large and p ~ N. 
An example of this type of expression and the one used for the approximate 
eigenvalue calculations in this paper is a modification of one given by 
Pyun and Fixman TM. When cast in the form using the segmental hydro- 
dynamic interaction factor h*, the h~ are given by 

gp ___ 4 sin'* [per~2 (N + 1) ] + 4h*N -312 [11 (p)+ 12 (p) ] (18) 

where [11 (p)+/~ (p)] is as given by Pyun and Fixman. 
For the case of low values of N, a precise solution of equation (14) is 

possible using numerical methods. Equation (14) can be written as 

..-) 

(HA - ~ . 1 )  ~t .  = 0 ( 1 9 )  

which has a non-trivial solution only if 

det (HA - h~l) = 0 (20) 

Denoting the product HA by P, equation (20) may be written in deter- 
minant form as 
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P o o -  h P01 Po~ . . .  Pos 

/)10 e l l  - • el2 PIN 

e~0 e~l P22 - X e~,, 

P~o P s i  Pwz • • • PNs - h 

= 0  (21) 

This gives a polynomial in h of order N + 1 and yields N + 1 roots. Since 

det A = O  

det P = 0  
(22) 

and hence one of the roots of h must be zero. This root is labelled h0 and 
is not used further. 

A set of relaxation times T, occurs in mathematical solutions involving 
oscillatory flow and is' associated with the rate of stress dissipation in the 
polymer after a given strain. These relaxation times are related to the 
eigenvalues kp by the expression 

%, = b2f / 6 k  Th, ,  (23) 

Thus h0 corresponds to an infinite value of ~'0 for which the chain moves 
as a rigid body. The N remaining eigenvalues are labelled hi to hn in- 
clusive in increasing order. Thus hi, the smallest non-zero eigenvalue, 
corresponds to the longest or terminal relaxation time Tx. 

For  the cases of N =  I and N =  2 closed form solutions of equation (21) 
have been obtained. Substitution of equations (2) and (12) into (20) for 
N = 1 yields the determinant to be solved, 

( 1 -  s / 2 h * ) -  h 

- ( 1 -  s/2h*) 

- (1 - s / 2h*) 

( 1 -  ~ /2h*) -  h 
= 0  (24) 

The roots are 
ho = 0  

hi = 2  (1 -- ~/2h*) (25) 

For N = 2, the determinant to be solved is 

( 1 -  ~ / 2 h * ) -  h 

- ( 1  - ~/2h*) 

(h* - ~/2h*) 

- 1 + 2 ~/2h* - h *  

2 (1 - ~/2h*) - h 

- 1 + 2 ~/2h* - h *  
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and the roots are 
h0=0 

hi = 1 - h* 

),5= 3 + ( 1 - 4  ~/2) h* (27) 

Thus the eigenvalues are given in closed form for N = 1 and 2 by (25) and 
(27) for all values of h*. 

A programme was written for an IBM 7040 to calculate the roots of 
equation (21). Several library programmes are also available in many 
computing systems which calculate eigenvalues of a real matrix. The 
programme used to calculate the eigenvalues presented in this paper uses 
the Newton-Raphson method to approximate the roots of the polynomial 
in equation (21). 

The parameter h* cannot become large without limit, as a simple argu- 
ment can show. Considering two beads which are nearest neighbours 
along the chain, the force exerted on one bead by the solvent due to 
the motion of the second cannot be greater than the force exerted on 
the fluid by the second. Employing the methods of Burgers TM, the result 
is obtained that h* : 4  0.471, for the case of motion along the line joining 
the two beads. In equation (25), h* is mathematically limited to values 
less than 0.707, or negative eigenvalues will result. In making the com- 
puter calculations, a value of h*=0.5 allowed the computation of only 
the first few eigenvalues for each value of N. 

Eigenvalues calculated from equation (20) and using the values for 
(11R~) given by equation (8) are listed in increasing order in Table 1 for 
values of N from 1 to 15 and for h* values of 0"01, 0'1, 0'3 and 0-4. The 
value in the fourth digit beyond the decimal is uncertain. Figure 1 is a 
plot of these exact values of ~ versus N for h*--0.1. As an aid in 
comparison, the approximate eigenvalues are indicated for the same h* 
value for N = 20 to N = 100. For each value of N, the approximate eigen- 
values are larger than those calculated exactly, and the apparent asymp- 
totic value for ~ is greater for the approximate set than for the exact 
set. The exact and approximate results come into agreement as h*--0, 
while the disagreement increases with increasing h*. 

In order to examine the dependence of the steady flow intrinsic viscosity 
[r/] upon the molecular weight M, equation (16) has been cast into the 
form TM 

[*/] =q~N1/2b3/N~m, (28) 

where m, is the segment mass and ~bN 1/2 is given by 

No~/~ h* ~ 1 ~Nl1~='311~ N p=1 h'--~ (29) 

According to the basic inclusions of the theory N is directly proportional 
to M. Also, from (28) ~bN a/~ differs from ['0] by the factor b~/N,~m,, this 
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factor being constant for different molecular weight samples of the same 
polymer in the same solvent. Thus plots of ~ N  lz2 versus N should exhibit 
the same character as curves of [v/] versus M. Figure 2 shows plots of  
chN 1/~ versus N computed using both the exact and approximate eigen- 
values, for values of h*=0 .01 ,  0.03, 0.1, 0.15, 0.2, 0.3 and 0'4. The 
curves for h* =0"05, 0"15 and 0"2 using the exact eigenvalues were obtained 
by geometrical interpolation from the other curves. 

Although the ¢hN 1/~ curves calculated from the exact and the approximate 
eigenvalues might be expected to converge to a common curve for large 
values of N, Figure 2 indicates that this convergence, if it occurs, is quite 
slow. Overlaying Figure 2 with experimentally determined [*/] versus M 
plots on the same scale can provide an indication of whether the two sets 
of curves do converge to a common value. 

Table 1. Exact eigenvalues h~ of equation (20) for various hydrodynamic interaction 
conditions h*, and for number of chain segments N from 1 to 15 

h* =0"01 

N = I  
1'9717 

N = 2  
0"9899 2"9534 

N = 3  
0"5822 1"9740 3"3589 

N = 4  
0"3809 1'3675 2"5799 3'5583 

N = 5  
0"2681 0'9920 1"9745 2"9540 3"6697 

N = 6  
0" 1988 0'7488 1"5380 2"4108 3" 1956 

N = 7  
0"1532 0"5838 1"2255 1"9748 2'7245 

N = 8  
0"1217 0"4673 0"9925 1'6342 2"3153 

N=9 
0'0990 0"3822 0"8196 1"3684 1"9750 
3"8359 

N = I 0  
0"0821 0"3183 0"6873 1"1593 1'6959 
3"6214 3"8524 

N = I I  
0"0693 0"2691 0"5842 0'9928 P4672 
3"3593 3"6698 3"8650 

N = I 2  
0'0592 0"2305 0"5023 0"8588 1"2790 
3'0874 3"4402 3"7078 3"8748 

N = I 3  
0'0512 0" 1996 0"4364 0"7495 1" 1231 
2"8250 3"1958 3"5053 3'7381 3"8826 

N =  1'4 
0'0447 0' 1746 0"3826 0"6594 0'9930 
2-5806 2"9543 3"2851 3-5584 3"7627 

N = I 5  
0"0394 0"1539 0"3380 0"5844 0"8835 
2"3576 2"7248 3"0630 3"3593 3"6023 

3"7380 

3'3592 3"7828 

2'9542 3"4744 3"8137 

2'5805 3'1259 3"5584 

2'2540 2"7887 3"2571 

1'9752 2"4823 2"9543 

1"7388 2'2115 2'6698 

1"5386 1"9752 2"4113 

1"3687 1"7703 2"1802 
3"8888 

1"2239 1"5925 1"9753 
3"7828 3"8940 
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Table 1--continued 
h* =0"1 

N = 1  
1"7171 

N = 2  
0"8999 2"5343 

N = 3  
0'5499 1"7402 2"8613 

N = 4  
0"3721 1"2380 2'2375 3'0207 

N = 5  
0" 2699 0' 9206 1"7457 2' 5402 3' 1093 

N = 6  
0'2055 0'7108 1'3855 2" 1036 2'7338 3" 1634 

N = 7  
0' 1624 0-5660 I" 1220 1"7489 2"3576 2"8642 3" 1987 

N=8 
0"1319 0"4620 0'9258 1"4685 2"0277 2"5422 2"9557 

N=9 
0" 1096 0"3848 @7768 I'2470 1"7507 2"2427 2'6796 
3"2406 

N = 1 0  
0"0927 0"3260 0"6614 1"0707 1"5212 1"9791 2'4105 
3"0719 3"2535 

N=11 
0"0796 0'2801 0'5702 0"9288 1"3312 I'7520 2" 1643 
2" 8652 3" 1101 3 "2634 

N = 1 2  
0'0692 0"2435 0"4970 0"8133 1"1735 1"5578 1"9454 
2"6497 2'9293 3" 1399 3"2711 

N = I 3  
0"0608 0"2140 0'4374 0"7182 1"0416 1'3919 1"7529 
2"4401 2"7361 2'9807 3" 1638 3"2773 

N =  14 
0"0539 0" lq897 0"3882 0"6391 0'9305 1"2500 1"5845 
2"2443 2"5438 2"8070 3"0226 3' 1832 3"2822 

N = 1 5  
0'0482 0" 1694 0"3471 0'5726 0"8362 1' 1282 1"4375 
2"0647 2"3603 2"6306 2"8659 3"0570 3"1991 3"2862 

3"2231 

3'0222 

2"7841 

2'5432 

2'3156 

2"1076 

1"9206 

1'7536 

h*=0"3 

N = I  
1"1515 

N = 2  
0"7000 1"6029 

N = 3  
0'4774 1'2207 

N = 4  
0'351~4 0"9499 

N = 5  
0"2724 0"7610 

N = 6  
0"2192 0"6255 

N = 7  
0'1813 0"5252 

N = 8  
0' 1533 0"4489 

N = 9  
0"1318 0"3892 
1"9177 

1"7563 

1'4778 1"8267 

1"2381 1"6215 1"8642 

1"0474 1"4217 1"7083 

0"8970 1"2477 1'5431 

0"7775 1"1098 1'3894 

0"6814 0'9774 1"2531 
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Table 1 (h*=O'3)---continued 

N = I 0  
0'11149 0"3417 0"6032 0"8739 1" 1336 1'3690 1"5706 1"7334 
1"8544 1"9228 

N = l l  
0"1014 0"3031 0"5385 0"7865 1"0295 1"2569 1"4585 1'6304 
1'7678 1"8664 1"9267 

N = 1 2  
0"0904 0'2712 0"4846 0"7121 0"9392 1' 1561 1"3548 1'5290 
1"6773 ~'7943 1"8783 1"9298 

N = I 3  
0"0812 0.2446 0'4390 0'6484 0"8605 1"0664 1.2594 1'4336 
1'5855 1"7148 1"8152 1'8878 1'9322 

N=l t4  
0°0735 0'2220 0"4001 0"5934 0"7916 0"9866 1" 1723 1"3443 
1"4977 1"6318 1"7450 1'8320 1'8955 1"9341 

N = 1 5  
0"0670 0"2028 0"3660 0-5458 0'7309 0'9157 1'0934 1'2615 
1"4146 1'5508 1"6701~ 1'7698 1-8456 1'9019 1"9357 

h*=0"4 

N = I  
0"8686 

N = 2  
0"6000 1"1372 

N = 3  
0"4397 0"9609 1"2051 

N = 4  
0"3393 0"8047 1"0996 

N = 5  
0"2719 0"6795 0"9851 

N = 6  
0"2244 0"5809 0'8782 

N = 7  
O" 1894 0'5028 0'7839 

N = 8  
0" lt627 0'4404 0' 7023 

N = 9  
0" 1418 0"3896 0"6326 
1' 2565 

N = I 0  
0"1251~ 0"3478 0"5728 
1"2415 1"2577 

N = I I  
0"1114 0"3130 0"5214 
1"2201 1'2452 1"2586 

N = I 2  
0"1001 0'2836 0"4770 
1" 1921 1"2278 1"2480 

N=13  
0.09069 0'2585 0'4385 
1' 1593 1"2051 1"2334 

N =  14 
0"08265 0'2369 0'4048 
1" 1255 1' 1767 1"2149 

N = 1 5  
0"07573 0"2182 0"3751 
1'0903 1' 1470 1" 1905 

1'2307 

1'1638 

1"0820 

0'9977 

0'9170 

0'8423 

0"7748 

0"7145 

0"6605 
1'2593 

0"6124 
1"2502 

005695 
1-2375 

0"5313 
1-2225 

1'2425 

1'1971 

1' 1374 

1"0714 

1" 0049 

0"9400 

0'8786 

0"8218 

0"7694 
1"2598 

0"7215 
1"2520 

0"6774 
1'2406 

1'2488 

1'2164 

1"1716 

1.1194 

1"0649 

P0098 

0"9554 

0'9036 

0"8547 
1"2602 

0.8090 
1'2535 

1'2525 

1'2283 

1"1939 

1'1519 

1"1067 

1"0604 

1"0131 

0"9665 

0"9214 
1'2605 

1'2549 

1'2362 

1"2093 

1'1751 

1"1368 

1"0976 

1" 0569 

1"0158 
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Figure 2---dp N1/~ versus N calculated from equation (29) using 
exact eigenvalues (solid lines) and approximate eigenvalues 

(dashed lines) for several values of h* 
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Equations (16) and (23) may be combined to give an expression for q'l 
in terms of [~/]. Using a form introduced elseWhere 11, ~'1 may be written as 

where 
"cl=C (N,h*) [~7] M~q,/ NakT (30) 

N I --1 C(N,h*)=  ~ h,/X. (31) 
/)=1 

Equation (30) is useful in obtaining values for ~'1 from intrinsic viscosity 
measurements which can then be compared with values of 71 obtained from 
independent measurements of oscillatory flow phenomena on the same 
polymer samples. Figure 3 presents plots of C (N,h*) versus N using both 
the exact and approximate sets of eigenvalues. Again, the curves using the 
exact eigenvalues for values of h*=0 '15  and h*=0.2  are geometrically 
interpolated. The problem of the convergence of the C (N,h*) curves 
computed from the exact to those obtained from approximate eigenvalues 

1° I 

I\ ' , ,  

0.7 

tO 

0-6 

0"5 

0-~ 

100 101 102 10 s 
N 

Figure 3--C(N,h*) versus N calculated from equation (31) 
using exact eigenvalues (solid lines) and approximate eigen- 

values (dashed lines) for several values of h* 

433 



G. B. THURSTON and J. D. MORRISON 

at large values of N is even more evident here than in the case of the 
function chN 1/~. Such a convergence, if it occurs, is indeed slow and occurs 
for quite large values of N. 

C O M P A R I S O N  W I T H  M E A S U R E M E N T S  

The theoretical behaviour of the intrinsic viscosity at low molecular weights 
may be compared with experimental data by comparing the plots of ~bN a/~ 
versus N with experimental plots of [~7] versus M. From equations (28) 
and (29), values of [~/] can be obtained from ~bN a/2 by specifying values 
for h*, b and rn,. This procedure may b~ carried out in reverse by making 
a best fit of the ~bN ~/~ versus N curves with the experimentally determined 
[~/] versus M curves. Figure 4 shows a plot of intrinsic viscosity versus 
molecular weight obtained by Thurston and Schrag 9 for dilute solutions of 
polystyrene in Aroclor 1248 over a wide range of molecular weights. The 
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Figure 4--[~/] versus M (day, shed l~es)  for  ,polystyrene in Aroclor  1248 and 
~bN1/z versus N (sol~d lines) ~ h*=0"15  

measurements were made at a temperature of 25°C, at which the viscosity 
of the Aroclor 1248 was 2-23 poises. The dashed line through the data 
points shows clearly the characteristic upward curvature of the plot for low 
molecular weights. The solid line is the theoretical curve of ~bN t/2 versus 
N for a value of h*=0"15 and for a superposition of the theoretical and 
experiment curves such that N = 1 segment at M = 3 200 and ¢hN 1/~ = 10 ~ at 
[~7]=43 cmS/g. For this particular case of h*=0.15,  the experimentally 
determined [~7] versus M curve approaches the ~bN ~/~ curve calculated from 
the approximate eigenvalues for large N. However, for higher values of 
h*, the data points may not approach the ~bN a/~ curves given by the approxi- 
mate eigenvalues. Using equations (11) and (28) and the relation 

rn, = M / N  N= (32) 
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the following relations are obtained: m~=5-31 x 10-2ag, b=5.16  × 10 -7 cm, 
f=3 .33  x 10-6g sec -z. Since the molecular weight of the styrene monomer 
is 104"t4, this value of ms places about 32 monomer units in each statistical 
segment. These values may be used to find terminal relaxation times for 
the polymer chains of different molecular weights using equation (30). 
Appropriate values of C(N,h*) for the case h*=0 '15  may be read from 
Figure 3 and substituted into equation (30) to find ~'t at each value M. 
The range of these determinations is restricted to the range of N from 1 to 
15 for which exact eigenvalues are known. The results of these calculations 
are shown by the dashed curve of Figure 5. 
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Figure 5~l'(c) and r z' versus M for polystyrene in 
Aroclor 1248; ~l versus M computed from intrinsic 
viscosity measurements using equation (30) (dashed 
line); ~'1 versus M computed from oscillatory flow 
birefringence using z z' in equation (33) (solid line) 

A comparison set of relaxation times for polystyrene in Aroclor 1248 
may be determined from oscillatory flow birefringence measurements 13, In 
this system having multiple relaxation times, the initial departure from low 
frequency response is largely determined by the longest relaxation time, ~'1'. 
The relaxation time ~'/ is to be distinguished from ~'z of equation (23) in 
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that TI' is dependent upon the internal viscosity of the chain. T1 can be 
derived from the rl" values by the expression 1°, 8 

~.l,=rl (1+ ~P 1 )~1 ) f N h~--a~ (33) 

where ~ is the. coefficient of internal viscosity. In contrast to the dilute 
solution conditions of the steady flow viscosity measurements, the oscillatory 
flow measurements are for solutions of finite concentration for which there 
is significant interaction between polymer molecules. By comparing a single 
theoretical relaxation time response curve with the low frequency ends of 
the experimentally measured response curves for each of the polystyrene 
samples shown in Figure 4, a set of concentration dependent relaxation times 
TI' (C) may be determined. Following the method, of Thurston 13 the values 
for T~'(C) may be related to the times zl" for dilute solutions by the ex- 
pression 

TIt : e/'lt (c)/K (c) (34) 

where K(c) is a concentration factor relating the measured and intrinsic 
viscosities for each .molecular weight. Both the times rl"(C) and TI" are 
shown in Figure 5. In order to use equation (33), the relation between M 
and N and the values of h* and 9 / f  must be known. Holding h* to 0"15 
and assuming the internal viscosity to be very low so that ~ / f  is near zero, 
the set of times ~'1 computed this way would lie very nearly along the rl' 
line of Figure 5. The effects of concentration upon the relation between 
M and N and the values of h* and 9 / f  are not known, however, and the 
relaxation times observed in finite concentration oscillatory flow birefrin- 
gence may differ from those calculated from steady flow viscosity measure- 
ments. Using different methods with the same samples of polystyrene at 
finite concentrations, it has been found 1~ that approximately 9 / f=2"0,  
h* =0"3 for lower molecular weights, and a segment weight is 1 000. This 
corresponds to approximately ten monomer units per segment. Using these 
values and equation (33), the values for T2 shown as a solid line in Figure 5 
are calculated. Here again the range of the calculation is restricted to that 
for which exact values of hi are known. In spite of the uncertainty in con- 
centration effects upon the parameters involved, the two sets of relaxation 
times, ~-i from [7] and r~ from oscillatory flow birefringence, differ by a 
factor of less than two at M = 4  000 and by about 50 per cent at M =  15 000. 
The comparison of these two separately determined relaxation times is con- 
sidered to be a demanding test of the Gaussian chain theory, particularly 
since one of the rls is dependent upon the internal chain viscosity while the 
other is not, and the two types of experimental measurements are mutually 
independent. 

Comparisons have also been made between the theoretical function ~bN 1/~ 
versus N and experimentally determined values of polystyrene in benzene, 
decalin, dioctylphthalate and toluene taken by Meyerhoff TM and Berry 29, and 
for similar data for low molecular weights of poly-y-benzyl-L-glutamate 
in dichloracetic acid taken by Mitchell, Woodward and Doty ~, poly-c~- 
methylstyrene in toluene taken by Cottam, Cowie and Bywater n, and for 
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polyoxyethyleneglycol in water and benzene taken by Sadron and Rempp u. 
In each of these cases the character of the molecular weight dependence 
curves is consistent with that of the theory. However, oscillatory flow 
measurements are not available to use in exacting a more demanding check 
between theory and experiment. 

In summary, it is noted that the use of the exact eigenvalues calculated 
in this work permits the successful theoretical description of the experi- 
mentally determined molecular weight dependence of intrinsic viscosity at 
low molecular weights, using N and h* as significant parameters. In addi- 
tion, a set of terminal relaxation times is obtained from steady flow intrinsic 
viscosity measurements which compare favourably with those obtained from 
independent measurements of oscillatory flow birefringence, subject to the 
uncertainties of concentration effects. In order to extend the application 
of the exact eigenvalues over a wider range of molecular weights, more 
convenient methods for solving the eigenvalues for values of N greater than 
15 are needed, and an analysis of the significance of the errors in the approxi- 
mate eigenvalue calculations would also be useful. Additional data on 
other polymers from measurements under both steady and oscillatory flow 
conditions over a wide range of molecular weights and concentrations are 
needed to clarify possible effects of concentration upon the theoretical para- 
meters and to examine the relaxation times encountered in both types of 
experiments. 
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